Convergent evolution of a complex fruit structure in the tribe Brassiceae (Brassicaceae).
نویسندگان
چکیده
PREMISE OF STUDY Many angiosperms have fruit morphologies that result in seeds from the same plant having different dispersal capabilities. A prime example is found in the Brassiceae (Brassicaceae), which has many members with segmented or heteroarthrocarpic fruits. Since only 40% of the genera are heteroarthrocarpic, this tribe provides an opportunity to study the evolution of an ecologically significant novelty and its variants. METHODS We analyzed nuclear (PHYA) and plastid (matK) sequences from 66 accessions using maximum parsimony, maximum likelihood, and Bayesian inference approaches. The evolution of heteroarthrocarpy and its variants was evaluated using maximum parsimony and maximum likelihood ancestral state reconstructions. KEY RESULTS Although nuclear and plastid phylogenies are incongruent with each other, the following findings are consistent: (1) Cakile, Crambe, Vella, and Zilla lineages are monophyletic; (2) the Nigra lineage is not monophyletic; and (3) within the Cakile clade, Cakile, Didesmus, and Erucaria are paraphyletic. Despite differences in the matK and PHYA topologies at both deep and shallow nodes, similar patterns of morphological evolution emerge. Heteroarthrocarpy, a complex morphological trait, has evolved multiple times across the tribe. Moreover, there are convergent transitions in dehiscence capabilities and fruit disarticulation across the tribe. CONCLUSIONS We present the first explicit analysis of fruit evolution within the Brassiceae, which exemplifies evolutionary lability. The repeated loss and gain of segment dehiscence and disarticulation suggests conservation in the genetic pathway controlling abscission with differential expression across taxa. This study provides a strong foundation for future studies of mechanisms underlying variation in dispersal capabilities of Brassiceae.
منابع مشابه
Diversification and the evolution of dispersal ability in the tribe Brassiceae (Brassicaceae).
BACKGROUND AND AIMS Dispersal and establishment ability can influence evolutionary processes such as geographic isolation, adaptive divergence and extinction probability. Through these population-level dynamics, dispersal ability may also influence macro-evolutionary processes such as species distributions and diversification. This study examined patterns of evolution of dispersal-related fruit...
متن کاملPhylogenetic Relationships of Brassicaceae Species Based on Matk Sequences
The chloroplast gene matK, located in the intron of chloroplast trnK, encodes maturase, and variations of matK provide substantial resolution for phylogenetic analyses at intergeneric levels. Sequence data from 127 species (including subspecies and varieties) of Brassicaceae and one outgroup specie (Cleome gynandra) were used to construct the phylogeny of this family and elucidate the phylogene...
متن کاملChromosome triplication found across the tribe Brassiceae.
We have used an approximately 8.7-Mb BAC contig of Arabidopsis thaliana Chromosome 4 to trace homeologous chromosome regions in 21 species of the family Brassicaceae. Homeologs of this segment could be identified in all tested species. Painting of pachytene chromosomes of Calepina, Conringia, and Sisymbrium species (2n = 14, 16), traditionally placed in tribe Brassiceae, showed one homeologous ...
متن کاملEvolution of SINE S1 retroposons in Cruciferae plant species.
The S1 element is a plant short interspersed element (SINE) that was first described and studied in Brassica napus. In this work, we investigated the distribution and the molecular phylogeny of the S1 element within the Cruciferae (= Brassicaceae). S1 elements were found to be widely distributed within the Cruciferae, especially in species of the tribe Brassiceae. The molecular phylogeny of S1 ...
متن کاملChromosomal phylogeny and karyotype evolution in x=7 crucifer species (Brassicaceae).
Karyotype evolution in species with identical chromosome number but belonging to distinct phylogenetic clades is a long-standing question of plant biology, intractable by conventional cytogenetic techniques. Here, we apply comparative chromosome painting (CCP) to reconstruct karyotype evolution in eight species with x=7 (2n=14, 28) chromosomes from six Brassicaceae tribes. CCP data allowed us t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of botany
دوره 98 12 شماره
صفحات -
تاریخ انتشار 2011